联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C
Amélie Montel-Hagen,1 Sandrina Kinet,1 Nicolas Manel,1,4 Cédric Mongellaz,1 Rainer Prohaska,2 Jean-Luc Battini,1 Jean Delaunay,3 Marc Sitbon,1 and Naomi Taylor1,
1 Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier I and II, Montpellier, France
2 Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
3 Hématologie, Hôpital de Bicêtre, APHP, INSERM U779, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
Summary
Of all cells, human erythrocytes express the highest level of the Glut1 glucose transporter. However, the regulation and function of Glut1 during erythropoiesis are not known. Here, we report that glucose transport actually decreases during human erythropoiesis despite a >3-log increase in Glut1 transcripts. In contrast, Glut1-mediated transport of L-dehydroascorbic acid (DHA), an oxidized form of ascorbic acid (AA), is dramatically enhanced. We identified stomatin, an integral erythrocyte membrane protein, as regulating the switch from glucose to DHA transport. Notably though, we found that erythrocyte Glut1 and associated DHA uptake are unique traits of humans and the few other mammals that have lost the ability to synthesize AA from glucose. Accordingly, we show that mice, a species capable of synthesizing AA, express Glut4 but not Glut1 in mature erythrocytes. Thus, erythrocyte-specific coexpression of Glut1 with stomatin constitutes a compensatory mechanism in mammals that are unable to synthesize vitamin C.