西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Trophoblast Differentiation Defect in Human Embryonic Stem

Trophoblast Differentiation Defect in Human Embryonic Stem Cells Lacking PIG-A and GPI-Anchored Cell-Surface Proteins
Guibin Chen,1,2 Zhaohui Ye,1,2,4 Xiaobing Yu,1,2 Jizhong Zou,1,2 Prashant Mali,1,2,5 Robert A. Brodsky,3 and Linzhao Cheng1,2,3,4,

1 Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2 Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3 Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
4 Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
5 Graduate Program in Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Summary
Pluripotent human embryonic stem (hES) cells can differentiate into various cell types derived from the three embryonic germ layers and extraembryonic tissues such as trophoblasts. The mechanisms governing lineage choices of hES cells are largely unknown. Here, we report that we established two independent hES cell clones lacking a group of cell surface molecules, glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs). The GPI-AP deficiency in these two hES clones is due to the deficiency in the gene expression of PIG-A (phosphatidyl-inositol-glycan class A), which is required for the first step of GPI synthesis. GPI-AP-deficient hES cells were capable of forming embryoid bodies and initiating cell differentiation into the three embryonic germ layers. However, GPI-AP-deficient hES cells failed to form trophoblasts after differentiation induction by embryoid body formation or by adding exogenous BMP4. The defect in trophoblast formation was due to the lack of GPI-anchored BMP coreceptors, resulting in the impairment of full BMP4 signaling activation in the GPI-AP-deficient hES cells. These data reveal that GPI-AP-enhanced full activation of BMP signaling is required for human trophoblast formation.