联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Virus-free induction of pluripotency and subsequent excision of reprogramming factors
Keisuke Kaji1, Katherine Norrby1, Agnieszka Paca1, Maria Mileikovsky2, Paria Mohseni2,3 & Knut Woltjen2
1 MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK
2 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
3 Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors1, 2, 3, 4, 5, 6, 7. However, such iPS cells contain a large number of viral vector integrations1, 8, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming9, 10, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia11, 12. Two transient transfection-reprogramming methods have been published to address this issue13, 14. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon15, 16, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.
Nature,doi:10.1038/nature07863,Knut Woltjen,Andras Nagy