联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages
Lei Bu1,2,4, Xin Jiang1,2,4, Silvia Martin-Puig1,2, Leslie Caron1,2, Shenjun Zhu1, Ying Shao1, Drucilla J. Roberts3, Paul L. Huang1, Ibrahim J. Domian1,2 & Kenneth R. Chien1,2
1 Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3208, 185 Cambridge Street, Boston, Massachusetts 02114, USA
2 Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
3 Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA
4 These authors contributed equally to this work.
The generation and expansion of diverse cardiovascular cell lineages is a critical step during human cardiogenesis, with major implications for congenital heart disease. Unravelling the mechanisms for the diversification of human heart cell lineages has been hampered by the lack of genetic tools to purify early cardiac progenitors and define their developmental potential1, 2, 3, 4. Recent studies in the mouse embryo have identified a multipotent cardiac progenitor that contributes to all of the major cell types in the murine heart5, 6, 7, 8. In contrast to murine development, human cardiogenesis has a much longer onset of heart cell lineage diversification and expansion, suggesting divergent pathways. Here we identify a diverse set of human fetal ISL1+ cardiovascular progenitors that give rise to the cardiomyocyte, smooth muscle and endothelial cell lineages. Using two independent transgenic and gene-targeting approaches in human embryonic stem cell lines, we show that purified ISL1+ primordial progenitors are capable of self-renewal and expansion before differentiation into the three major cell types in the heart. These results lay the foundation for the generation of human model systems for cardiovascular disease and novel approaches for human regenerative cardiovascular medicine.