联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells
Yoshinori Yoshida1,,,Kazutoshi Takahashi1,Keisuke Okita1,Tomoko Ichisaka2andShinya Yamanaka1,2,3,4,,
1 Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
2 Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
3 Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
4 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
Mouse and human somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the transduction of four transcription factors, Oct 3/4, Sox2, Klf4, and c-Myc (Maherali etal., 2007,Meissner etal., 2007,Okita etal., 2007,Takahashi etal., 2007,Takahashi and Yamanaka, 2006,Wernig etal., 2007). Patient or disease-specific human iPSCs could be used for studying pathogenesis, or potentially also to treat patients suffering from incurable diseases by transplanting the regenerated grafts derived from their own cells. However, the low induction efficiency and high tumorigenesis rate due to the use of proto-oncogenes, such as c-Myc, continue to hinder the clinical application of iPS technology. Many efforts have been made to find otherfactors or small molecules that facilitate the reprogramming process (Huangfu etal., 2008,Shi etal., 2008b). In this study, we show that conducting reprogramming in hypoxic conditions results in improved efficiency for both mouse and human cells.