西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Arabidopsis resistance protein SNC1 activates immune respon

Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
Zhaohai Zhua,b, Fang Xub,c, Yaxi Zhangb, Yu Ti Chengc, Marcel Wiermerc, Xin Lic, and Yuelin Zhangb,1

aState Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, China Agricultural University, Beijing 100094, China;
b National Institute of Biological Sciences, Beijing 102206, China; and
cMichael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

In both plants and animals, nucleotide-binding (NB) domain and leucine-rich repeat (LRR)-containing proteins (NLR) function as sensors of pathogen-derived molecules and trigger immune responses. Although NLR resistance (R) proteins were first reported as plant immune receptors more than 15 years ago, how these proteins activate downstream defense responses is still unclear. Here we report that the Toll-like/interleukin-1 receptor (TIR)-NB-LRR R protein, suppressor of npr1-1, constitutive 1 (SNC1) functions through its associated protein, Topless-related 1 (TPR1). Knocking out TPR1 and its close homologs compromises immunity mediated by SNC1 and several other TIR-NB-LRR–type R proteins, whereas overexpression of TPR1 constitutively activates SNC1-mediated immune responses. TPR1 functions as a transcriptional corepressor and associates with histone deacetylase 19 in vivo. Among the target genes of TPR1 are Defense no Death 1 (DND1) and Defense no Death 2 (DND2), two known negative regulators of immunity that are repressed during pathogen infection, suggesting that TPR1 activates R protein-mediated immune responses through repression of negative regulators.