联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Activation of Plant Immune Responses by a Gain-of-Function Mutation in an Atypical Receptor-Like Kinase1,[C],[W],[OA]
Dongling Bi, Yu Ti Cheng, Xin Li and Yuelin Zhang*
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, China Agricultural University, Beijing 100094, People's Republic of China (D.B.); National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China (D.B., Y.Z.); Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Y.T.C., X.L.)
Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive1 (snc1) contains a gain-of-function mutation in a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat Resistance (R) protein and it has been a useful tool for dissecting R-protein-mediated immunity. Here we report the identification and characterization of snc4-1D, a semidominant mutant with snc1-like phenotypes. snc4-1D constitutively expresses defense marker genes PR1, PR2, and PDF1.2, and displays enhanced pathogen resistance. Map-based cloning of SNC4 revealed that it encodes an atypical receptor-like kinase with two predicted extracellular glycerophosphoryl diester phosphodiesterase domains. The snc4-1D mutation changes an alanine to threonine in the predicted cytoplasmic kinase domain. Wild-type plants transformed with the mutant snc4-1D gene displayed similar phenotypes as snc4-1D, suggesting that the mutation is a gain-of-function mutation. Epistasis analysis showed that NON-RACE-SPECIFIC DISEASE RESISTANCE1 is required for the snc4-1D mutant phenotypes. In addition, the snc4-1D mutant phenotypes are partially suppressed by knocking out MAP KINASE SUBSTRATE1, a positive defense regulator associated with MAP KINASE4. Furthermore, both the morphology and constitutive pathogen resistance of snc4-1D are partially suppressed by blocking jasmonic acid synthesis, suggesting that jasmonic acid plays an important role in snc4-1D-mediated resistance. Identification of snc4-1D provides us a unique genetic system for analyzing the signal transduction pathways downstream of receptor-like kinases.