西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Modeling inherited metabolic disorders of the liver using h

Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells
S. Tamir Rashid1,2, Sebastien Corbineau1,3, Nick Hannan1, Stefan J. Marciniak2, Elena Miranda2,4, Graeme Alexander5, Isabel Huang-Doran6, Julian Griffin6, Lars Ahrlund-Richter7, Jeremy Skepper8, Robert Semple6, Anne Weber3, David A. Lomas2 and Ludovic Vallier1

1Laboratory for Regenerative Medicine and
2Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
3INSERM U972, University Paris-Sud, IFR 69, H?pital du Kremlin-Bicêtre, Le Kremlin-Bicêtre, France.
4Department of Cell Biology and Development, Universita’ “La Sapienza,” Rome, Italy.
5Department of Medicine, School of Clinical Medicine, and
6University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
7Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
8Department of Physiology, Development and Neuroscience, Multi-Imaging Centre School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom.

Human induced pluripotent stem (iPS) cells hold great promise for advancements in developmental biology, cell-based therapy, and modeling of human disease. Here, we examined the use of human iPS cells for modeling inherited metabolic disorders of the liver. Dermal fibroblasts from patients with various inherited metabolic diseases of the liver were used to generate a library of patient-specific human iPS cell lines. Each line was differentiated into hepatocytes using what we believe to be a novel 3-step differentiation protocol in chemically defined conditions. The resulting cells exhibited properties of mature hepatocytes, such as albumin secretion and cytochrome P450 metabolism. Moreover, cells generated from patients with 3 of the inherited metabolic conditions studied in further detail (α1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease type 1a) were found to recapitulate key pathological features of the diseases affecting the patients from which they were derived, such as aggregation of misfolded α1-antitrypsin in the endoplasmic reticulum, deficient LDL receptor–mediated cholesterol uptake, and elevated lipid and glycogen accumulation. Therefore, we report a simple and effective platform for hepatocyte generation from patient-specific human iPS cells. These patient-derived hepatocytes demonstrate that it is possible to model diseases whose phenotypes are caused by pathological dysregulation of key processes within adult cells