西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Induction of human neuronal cells by defined transcription

Induction of human neuronal cells by defined transcription factors

Zhiping P. Pang,Nan Yang, Thomas Vierbuchen, Austin Ostermeier,Daniel R. Fuentes, Troy Q. Yang, Ami Citri, Vittorio Sebastiano, Samuele Marro, Thomas C. Südhof1,  & Marius Wernig

Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells13. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6?days after transgene activation. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.