西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Evidence for a Common Mechanism of SIRT1 Regulation by Allo

Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators


Basil P-Hubbard, Ana P. Gomes, Han Dai, Jun Li, April W-Case, Thomas Considine, Thomas V-Riera, Jessica E-Lee, Sook Yen E, Dudley W- Lamming, Bradley L-Pentelute, Eli R-Schuman, Linda A-Stevens, Alvin J-Y-Ling, Sean M-Armour, Shaday Michanl, Huizhen Zhao, Yong Jiang, Sharon M-Sweitzer, Charles A-Blum, Jeremy S-Disch, Pui Yee Ng, Konrad T-Howitz, Anabela P-Rolo, Yoshitomo Hamuro, Joel Moss, Robert B- Perni, James L-Ellis, George P-Vlasuk, David A-Sinclair.

A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu230, located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.