联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis
Rongcheng Lin,1 Lei Ding,1 Claudio Casola,2 Daniel R. Ripoll,3 Cédric Feschotte,2 Haiyang Wang1*
Plants use light to optimize growth and development. The photoreceptor phytochrome A (phyA) mediates various far-red light–induced responses. We show that Arabidopsis FHY3 and FAR1, which encode two proteins related to Mutator-like transposases, act together to modulate phyA signaling by directly activating the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. FHY3 and FAR1 have separable DNA binding and transcriptional activation domains that are highly conserved in Mutator-like transposases. Further, expression of FHY3 and FAR1 is negatively regulated by phyA signaling. We propose that FHY3 and FAR1 represent transcription factors that have been co-opted from an ancient Mutator-like transposase(s) to modulate phyA-signaling homeostasis in higher plants.
1 Boyce Thompson Institute for Plant Research (BTI), Cornell University, Ithaca, NY 14853, USA.
2 Department of Biology, University of Texas, Arlington, TX 76019, USA.
3 Computational Biology Service Unit (CBSU), Cornell University, Ithaca, NY 14853, USA.
* To whom correspondence should be addressed. E-mail