西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Nanomagnetic actuation of receptor-mediated signal transduc

Nature Nanotechnology 3, 36 - 40 (2008)
Published online: 23 December 2007 | doi:10.1038/nnano.2007.418

 

Subject Categories: Nanobiotechnology | Nanomagnetism and spintronics

Nanomagnetic actuation of receptor-mediated signal transduction

Robert J. Mannix1,4, Sanjay Kumar1,2,4, Flávia Cassiola1, Martín Montoya-Zavala1, Efraim Feinstein3, Mara Prentiss3 & Donald E. Ingber1

Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead–bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man–machine interfaces.