联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com
西亚试剂 —— 品质可靠,值得信赖
Site-specific ubiquitination is required for relieving the transcription factor Miz1-mediated suppression on TNF-α–induced JNK activation and inflammation
Jing Liua,1, Jie Yana, Shan Jiangb, Jing Wenb, Long Chenb, Yingming Zhaoa, and Anning Lina,b,2
The transcription factor zinc-finger protein Miz1 represses TNF-α–induced JNK activation and the repression is relieved upon TNF-α stimulation. However, the underlying mechanism is incompletely understood. Here we report that Miz1 interferes with the ubiquitin conjugating enzyme (E2) Ubc13 for binding to the RING domain of TNF-receptor associated factor 2 (TRAF2), thereby inhibiting the ubiquitin ligase (E3) activity of TRAF2 and suppressing TNF-α–induced JNK activation. Upon TNF-α stimulation, Miz1 rapidly undergoes K48-linked polyubiquitination at Lys388 and Lys472 residues and subsequent proteasomal degradation in a TRAF2-dependent manner. Replacement of Lysine 388 and Lysine 472 by arginines generates a nondegradable Miz1 mutant, which significantly suppresses TNF-α–induced JNK1 activation and inflammation. Thus, our results reveal a molecular mechanism by which the repression of TNF-α–induced JNK activation by Miz1 is de-repressed by its own site-specific ubiquitination and degradation, which may account for the temporal control of TNF-α–JNK signaling.